ГК "МегаКапитал"

СРО-С-187-26012010 Лицензия МЧС: 8-Б/02649
service

Радиолинейная сеть

Радиолинейная сеть

Радиорелейная связь (РРЛ) – вид радиосвязи, образующийся в результате работы цепочки принимающих и передающих радиостанций. Наземная радиорелейная связь функционирует на миллиметровых, сантиметровых и дециметровых волнах. РРЛ-сети играют важную роль в сотовой связи, поскольку позволяют передавать очень большие объемы трафика при минимальных затратах. В будущем эта технология способна покрыть потребности сотовых операторов в пропускной способности на все 100%, а значит обеспечить качественную работу множества различных услуг и приложений, подключение к интернету устройств и вещей.

Возможности РРЛ

Главное преимущество РРЛ связано с возможностью увеличить пропускную способность как backhaul-, так и fronthaul-сетей. РРЛ позволяет использовать сразу несколько частотных диапазонов и таким образом увеличить емкость сети при минимальных расходах. Например, используя частоты в диапазоне E-band (70/80 ГГц), можно увеличить пропускную способность в семь раз и при этом разгрузить традиционные для сотовой связи частоты. Это имеет большое значение в свете запуска в коммерческую эксплуатацию сетей пятого поколения (5G), запланированного на 2020 год.

Для модернизации существующих сетей в процессе развертывания 5G будет использоваться комбинация технологий радиорелейной и оптоволоконной связи. Выбирая между РРЛ и оптоволокном как технологией развития транспортной сети, операторы принимают решение исходя из наличия оптоволокна в том или ином районе и стоимости владения сетью (показатель ТСО). «В России не везде можно и целесообразно прокладывать ВОЛС, поэтому мы не планируем отказываться от использования РРЛ. В каждом конкретном случае мы изучаем все возможные способы строительства и модернизации сети и выбираем тот, который является оптимальным», — поясняет представитель компании «МегаФон» Юлия Дорохина. Аналогичной стратегии придерживается Tele2. «Мы используем радиорелейное оборудование там, где это экономически целесообразно», — говорит представитель Tele2 Константин Прокшин.

Радиолинейная сеть

Оптоволокно в силу надежности обеспечиваемых соединений все чаще применяется для государственных услуг и фиксированной связи, например, при развертывании FTTH-решений в домене доступа. РРЛ, в свою очередь, является основной технологией для соединения базовых станций, ее преимущества – быстрота, невысокая стоимость развертывания и серьезный рост пропускной способности. «Радиорелейная  связь —  это основной способ подключения базовых станций на нашей сети наряду с ВОЛС. Мы используем этот способ подключения сейчас и планируем использовать его в будущем. При этом мы строим ВОЛС до позиций в городах и на узловых позициях, что обеспечивает эффективную целевую архитектуру транспортной сети», —

комментирует директор по развитию сети ПАО «ВымпелКом» Сергей Кнышев.

По прогнозам Ericsson к 2020 году около 65% всех типов базовых станций в мире в качестве среды передачи будут использовать РРЛ (исключение составят Китай, Япония, Южная Корея и Тайвань, где высока степень проникновения оптического волокна). При этом активней всего будет осваиваться частотный диапазон E-band, на который в 2020 году будет приходиться около 20% вновь развертываемых РРЛ систем. К этому времени доля традиционных частотных диапазонов 6-42 ГГц составит 70% для вновь развертываемых РРС. Впрочем, популярность РРЛ будет сильно варьироваться от региона к региону. Например, в Северной Америке к 2020 году число подключенных через РРЛ базовых станций достигнет 20%, а в Индии этот показатель составит 70%. Столь существенная разница сложилась исторически и связана, в основном, со степенью зрелости телекоммуникационных рынков и доступностью услуг фиксированной связи.

Используемые частотные диапазоны

В настоящее время, для радиорелейной связи используется полоса шириной около 40 ГГц, однако она доступна целиком не во всех странах мира. В РРЛ выделяется 5 диапазонов, каждый из которых имеет свои характеристики:

6–13 ГГц Это низкие частотные диапазоны, они менее чувствительны к дождю, и по этой причине применяются в дождливых регионах на протяженных транзитных участках.

Пропускная способность в этом диапазоне ограничена, однако проблема решается агрегацией нескольких каналов. Чаще всего используется полоса 7 ГГц, менее популярны 6 ГГц и 8 ГГц. Что касается более высоких участков этого спектра, в большей части стран мира используется 13 ГГц, а в Северной Америке – 11 ГГц. Полоса 10 ГГц эксплуатируется в основном на Ближнем Востоке.

15–23 ГГц Эти частоты сейчас используются во многих странах мира, и они продолжат играть важную роль в ближайшие годы. С недавних пор в данных диапазонах используются более широкие каналы, и это при сочетании с технологиями, повышающими эффективность использования спектра, позволит увеличить пропускную способность сетей в будущем.

26–42 ГГц В этих диапазонах существуют как широко используемые частоты, так и не используемые вовсе. В Европе операторы активно работают в диапазоне 38 ГГц, и в дальнейшем ситуация не изменится. Также операторами занят диапазон 26 ГГц, и растет интерес к частотам в диапазонах 28 ГГц и 32 ГГц. Большие перспективы у частотных каналов шириной 56 МГц и 112 МГц, поскольку они способны обеспечить гигабитные скорости передачи данных.

60 ГГц Диапазон V-band (58,25-63,25 ГГц) идеально подходит для приложений малых сот, так как обеспечивает высокую пропускную способность из-за большой ширины каналов и низкий уровень интерференции из-за большого затухания. До настоящего времени диапазон 60 ГГц активно не использовался, поскольку уличные сети из малых сот не развертывались в больших масштабах. В ряде стран операторы уже начали строить РРЛ сети в этом диапазоне, однако в во многих уголках мира его статус остается неясным. Сейчас важно определиться с регулированием совместного использования данного диапазона, для того, чтобы операторы и разные службы не создавали помех для работы друг друга.

70/80 ГГц В последние годы растет число развертываний в диапазоне E-band, главным преимуществом которого является возможность обеспечить очень высокую пропускную способность. Эти частоты применяются для передачи данных на сравнительно короткое расстояние в 2-5км, однако этого достаточно для городских условий. Во многих странах существует упрощенный режим лицензирования в данном диапазоне, который стимулирует интерес к нему со стороны операторов.

«При новом строительстве достаточно популярным в городских условиях решением является использование оборудования  нелицензионных диапазонов частот 60, 70/80 ГГц (V-band, E-band) в силу ряда факторов: относительная простота самого оборудования, оперативность,  универсальность, уведомительных характер использования», — поясняет представитель компании «Ростелеком» Андрей Поляков.

«Мы используем самые современные типы оборудования РРЛ на базе IP и новые технологии: широкополосные РРЛ и РРЛ в высокочастотных диапазонах — Eband, Vband, которые обеспечивают большие скорости при использовании нелицензируемых диапазонов», — говорит директор по развитию сети ПАО «ВымпелКом» Сергей Кнышев.

На данный момент в диапазоне E-band оборудование РРЛ способно обеспечивать передачу данных на скорости до 5 Гбит/сек. В частности, с февраля этого года такие скорости доступны в сети египетского оператора Mobinil, входящего в Orange Group. Оператор использует системы Ericsson MINI-LINK 6352. «Ширина диапазона E-band обеспечивает высокую пропускную способность сети, — поясняет глава Ericsson в регионе Ближний Восток и Африка Рафия Ибрагим (Rafiah Ibrahim). — Использование систем MINI-LINK 6352 позволило улучшить LTE-покрытие и существенно увеличить скорость передачи данных в сети Mobinil».

В целом, каждый из пяти диапазонов радиорелейной связи имеет большой потенциал, для использования которого в полной мере требуется внести коррективы в законодательство. При использовании V- и Е-диапазонов и технологий XPIC, MIMO, а также антенн со сверхвысокой производительностью, таких как ETSI class 4, можно добиться более эффективного использования имеющегося частотного спектра и повысить пропускную способность сетей. «В традиционных диапазонах мы стали использовать адаптивную модуляцию, XPIC, и другие технологии, увеличивающие пропускную способность и надежность сети», — говорит Сергей Кнышев.

Кроме того, сейчас ведутся дискуссии об использовании диапазонов W-band (92-114,5 ГГц) и D-band (141–174,8 ГГц). В частности, компания Ericsson и Технический университет Чалмерса недавно продемонстрировали работу чипсета, обеспечивающего передачу данных на скорости 40 Гбит/сек в диапазоне 140 ГГц.

Перспективы РРЛ

Простота использования, быстрота развертывания и высокая пропускная способность сетей востребованы во всех отраслях промышленности. РРЛ используется в секторе ЖКХ для передачи трафика SCA DA, для которого важна высокая пропускная способность. Благодаря надежности и гибкости РРЛ применяется в работе государственных служб, в частности, полиции. Также РРЛ используется в корпоративных сетях в качестве технологии, дополняющей оптоволокно. Интернет-провайдеры применяют радиорелейную связь для оказания услуг домашним хозяйствам, поскольку такие сети строятся в короткие сроки и позволяют быстро начать получать доход от предоставления услуг доступа в интернет. РРЛ все чаще используется для трансляции эфирного телевидения, особенно больше значение данная технология приобрела в связи с переходом с аналогового на цифровое вещание. Кроме того, РРЛ применяется в создании мультисервисных сетей, в которых требуется обеспечить стабильность передачи и защиту данных.

«Сфера применения РРЛ трансформируется, всё более смещаясь в сегмент региональных и городских линий связи, а также в сегмент линий доступа. Традиционные магистральные РРЛ продолжают использоваться в основном в северных регионах, но постепенно их роль снижается в пользу оптических технологий там, где такая замена возможна и экономически целесообразна, — говорит представитель компании «Ростелеком» Андрей Поляков. — РРЛ, на мой взгляд, могут иметь перспективы развития в северных регионах с низкой плотностью населения и, соответственно, незначительным прогнозируемым ростом трафика, а также, в силу природных особенностей территорий (горы, вечная мерзлота, нестабильные грунты), удорожающих прокладку ВОЛП по сравнению со средней полосой РФ. Также РРЛ могут быть востребованы в местах, где прокладка ВОЛП практически  невозможна- различные природоохранные территории и заповедники». 

Варианты развертывания РРЛ-сетей

Существует множество вариантов развертывания радиорелейных сетей. При этом выбранный сценарий развертывания влияет на все аспекты работы, начиная от базовых станций и расходов на поддержание работы сети, заканчивая производительностью и возможностями для модернизации. Один из путей – пошаговое развертывание (hop-by-hop) по аналогии с коробками для пиццы с фиксированной конфигурацией, которая создается постепенно, исходя из текущих потребностей. Сетевые узлы при этом представляют из себя модули, что позволяет с легкостью расширять их, увеличивая пропускную способность. Ценность такого подхода — гарантия минимальной цены каждого шага и как следствие – наилучший показатель TCO. Недостаток данной модели заключается в том, что в итоге можно получить сеть, сплошь состоящую из оборудования разных вендоров.

Для того, чтобы в полной мере оценить преимущества концепции сетевых узлов, специалисты компании Ericsson изучили типичный сетевой кластер из узлов, состоящих из 109 транзитных сегментов, построенных на базе радиорелейного оборудования шести различных вендоров. При проектировании сети использовалась звездная топология, в которой центральный узел агрегирует весь трафик со всех узлов РРЛ. При этом для кластера был предусмотрен план модернизации, рассчитанный на пять лет и учитывающий поддержку растущего 3G- и 4G-трафика.

Было разработано три модели:

  • пошаговая (hop-by-hop) модель,
  • модель с использованием сетевых узлов,
  • модель, комбинирующая оба варианта.

План развития сети состоял из следующих этапов:

  • Рост скорости передачи данных по сети 3G: 30 Мбит/сек в первый год с дальнейшим ростом на 10% в год;
  • Расширение сети 4G: 10 МГц в первый год, 10+10 МГц во второй и третий годы, 10+20 МГц в четвертый и пятый годы.

В результате проведенных исследований выяснилось, что использование сетевых узлов является наиболее эффективным и наименее затратным способом увеличения пропускной способности, при котором новый функционал внедряется шаг за шагом. После пяти лет использования сети, состоящей из узлов, затраты сократились на 40%. Это было достигнуто за счет повторного использования оборудования, обеспечивающего экономию на расходах, связанных с покупкой нового оборудования и комплектующих. В то же время, по мере развития сети пошаговая модель потребовала полной замены всего оборудования, а также апгрейда базовых станций и кабелей. Совместное использование коммутаторов, вентиляторов, блоков питания и процессоров позволило снизить потребление энергии и, следовательно, сократить расходы на оборудование при расширении существующих сайтов.

Модель на базе сетевых узлов обеспечила сокращение количества оборудования в три раза. Это привело к упрощению операций и процессов поддержки работы сети, что в конечном итоге вылилось в снижение трудозатрат и издержек. Также удалось добиться снижения затрат за счет сокращения времени, требующегося для решения проблем с производительностью и отказами оборудования. Кроме того, активно применялся апгрейд действующего оборудования, который также уменьшил возможные расходы. В придачу к этому сокращение количества элементов оборудования позволило улучшить процессы мониторинга и минимизировать время, требующееся для восстановления сети после отказов и время, необходимое для принятия мер для улучшения пользовательских характеристик.

Помимо всего перечисленного, в ходе испытаний специалисты Ericsson выяснили, что при применении модели с сетевыми узлами требуется в три раза меньшая площадь, чем при использовании пошаговой модели. Сокращение количества стоек при узловой модели позволяет сэкономить на покупке шкафов. Дело в том, что на многих сайтах расходы на шкафы и соответсвующую инфраструктуру могут превышать расходы на транспортное оборудование, а при строительстве сети на основе узлового подхода можно избежать этих расходов. Также при такой модели в пятилетней перспективе значительно сокращается показатель OPEX, поскольку установка меньшего количества оборудования требует меньше места, что ведет к уменьшению затрат на аренду и меньшему энергопотреблению.

ОБРАТНЫЙ ЗВОНОК
Нажимая кнопку "Отправить данные", я даю свое согласие на обработку персональных данных, в соответствии с Федеральным законом от 27.07.2006 №152-ФЗ “О персональных данных”, на условиях и для целей определенных в Согласии на обработку персональных данных.
ОСТАВИТЬ ЗАЯВКУ
Нажимая кнопку "Отправить данные", я даю свое согласие на обработку персональных данных, в соответствии с Федеральным законом от 27.07.2006 №152-ФЗ “О персональных данных”, на условиях и для целей определенных в Согласии на обработку персональных данных.